دسته بندی | روانشناسی و علوم تربیتی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 2155 کیلو بایت |
تعداد صفحات فایل | 20 |
مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی
چکیده
ترافیک (عبور و مرور) جادهای به عنوان منبع اصلی سر و صدای محیطهای شهری شناخته شده و به اثبات رسیده است که این سر و صدا به طور قابل توجهی بر سلامت جسمی و روانی انسان و بهره وری نیروی کار تأثیر می گذارد. پس، بسیار مهم است برای کنترل سطح صوتی این سر و صدا در محیطهای شهری به توسعۀ روشهای مدلسازی سر و صدای ترافیک جادهای بپردازیم.همانطور که در ادبیات موضوع مشاهده می شود، روشهایی که با این موضوع سر و کار دارند عموماً بر اساس تحلیل رگرسیون پایه گذاری شدهاند و دیگر رویکردها کمتر بهکار برده شدهاند. در این مقاله روشی جدید ارائه شده که بر اساس بهینهسازی استوار است. در شبیه سازی این کار از چهار تکنیک استفاده شده است؛ الگوریتم ژنتیک، الگوریتم هوکی و جیوز، بازپخت و تبرید شبیه سازی شده و بهینه سازی اجتماعات. دو سناریوی متفاوت در این مقاله ارائه شده است. در سناریوی اولِ روشهای بهینه سازی، برای پیدا کردن مناسبترین پارامترها از کل مجموعه دادههای اندازه گیری شده استفاده می شود، در حالی که در سناریوی دوم، فقط بابعضی از دادههای اندازه گیریپارامترهای بهینه شده پیدا شدند در حالی که از مابقی داده ها برای ارزیابی قابلیت های پیش بینی مدل استفاده شد. برازش مدل با استفاده از ضریب تعیین و دیگر پارامترهای آماری ارزیابی شد و نتایج در هر دو سناریو نتایج نشان دهندۀ توافق بالای بین دادههای اندازهگیری شده و ارزشهای محاسبه شده هستند. همچنین، این مدل را با مدلهای آماری کلاسیک هم مقایسه کردیم و قابلیتهای برتر مدل پیشنهادی ما نشان داده شد. شبیهسازی نیز با استفاده از بسته ای از نرم افزارهای موثق و کاربر پسند انجام شد.
کلمات کلیدی: سروصدای ترافیک، هوش مصنوعی، الگوریتم ژنتیک، هوکی و جیوز، بازپخت و تبرید شبیه سازی شده، بهینه سازی اجتماع ذرات، نرم افزار
دسته بندی | روانشناسی و علوم تربیتی |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 2155 کیلو بایت |
تعداد صفحات فایل | 20 |
مقاله ترجمه شده داده کاوی با روش های مختلف بهینه سازی قابل ویرایش با فرمت doc به همراه اصل مقاله انگلیسی
چکیده
ترافیک (عبور و مرور) جادهای به عنوان منبع اصلی سر و صدای محیطهای شهری شناخته شده و به اثبات رسیده است که این سر و صدا به طور قابل توجهی بر سلامت جسمی و روانی انسان و بهره وری نیروی کار تأثیر می گذارد. پس، بسیار مهم است برای کنترل سطح صوتی این سر و صدا در محیطهای شهری به توسعۀ روشهای مدلسازی سر و صدای ترافیک جادهای بپردازیم.همانطور که در ادبیات موضوع مشاهده می شود، روشهایی که با این موضوع سر و کار دارند عموماً بر اساس تحلیل رگرسیون پایه گذاری شدهاند و دیگر رویکردها کمتر بهکار برده شدهاند. در این مقاله روشی جدید ارائه شده که بر اساس بهینهسازی استوار است. در شبیه سازی این کار از چهار تکنیک استفاده شده است؛ الگوریتم ژنتیک، الگوریتم هوکی و جیوز، بازپخت و تبرید شبیه سازی شده و بهینه سازی اجتماعات. دو سناریوی متفاوت در این مقاله ارائه شده است. در سناریوی اولِ روشهای بهینه سازی، برای پیدا کردن مناسبترین پارامترها از کل مجموعه دادههای اندازه گیری شده استفاده می شود، در حالی که در سناریوی دوم، فقط بابعضی از دادههای اندازه گیریپارامترهای بهینه شده پیدا شدند در حالی که از مابقی داده ها برای ارزیابی قابلیت های پیش بینی مدل استفاده شد. برازش مدل با استفاده از ضریب تعیین و دیگر پارامترهای آماری ارزیابی شد و نتایج در هر دو سناریو نتایج نشان دهندۀ توافق بالای بین دادههای اندازهگیری شده و ارزشهای محاسبه شده هستند. همچنین، این مدل را با مدلهای آماری کلاسیک هم مقایسه کردیم و قابلیتهای برتر مدل پیشنهادی ما نشان داده شد. شبیهسازی نیز با استفاده از بسته ای از نرم افزارهای موثق و کاربر پسند انجام شد.
کلمات کلیدی: سروصدای ترافیک، هوش مصنوعی، الگوریتم ژنتیک، هوکی و جیوز، بازپخت و تبرید شبیه سازی شده، بهینه سازی اجتماع ذرات، نرم افزار