هزار فایل: دانلود نمونه سوالات استخدامی

دانلود فایل, مقاله, مقالات, آموزش, تحقیق, پروژه, پایان نامه,پروپوزال, مرجع, کتاب, منابع, پاورپوینت, ورد, اکسل, پی دی اف,نمونه سوالات استخدامی,خرید کتاب,جزوه آموزشی ,,استخدامی,سوالات استخدامی,پایان نامه,خرید سوال

هزار فایل: دانلود نمونه سوالات استخدامی

دانلود فایل, مقاله, مقالات, آموزش, تحقیق, پروژه, پایان نامه,پروپوزال, مرجع, کتاب, منابع, پاورپوینت, ورد, اکسل, پی دی اف,نمونه سوالات استخدامی,خرید کتاب,جزوه آموزشی ,,استخدامی,سوالات استخدامی,پایان نامه,خرید سوال

پاورپوینت فصل 14 نور، بازتاب و شکست نور

پاورپوینت فصل 14 نور، بازتاب و شکست نور

پاورپوینت-فصل-14-نور-بازتاب-و-شکست-نورلینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل :  powerpoint (..pptx) ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 28 اسلاید

 قسمتی از متن powerpoint (..pptx) : 
 

فصل 14 : نور، بازتاب و شکست نور
ادامه

 

دانلود فایل

نور در معماری 19 ص

نور در معماری 19 ص

نور-در-معماری-19-صلینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 16 صفحه

 قسمتی از متن word (..doc) : 
 

‏نور در ‏معماری
‏زیبائی که به چشم می آید از پرتو نور و روشنائی است و گرنه در تاریکی ،زیبائی مفهومی ندارد.زیبائی حقیقتی با نور معرفت درک می گردد و زیبائی ظاهری با عزیزترین حس ما که بینائی است دیده می شود. نور و روشنایی چه ظاهری و چه عرفانی باعث می شود که زیبائی به چشم آید و رنگ و سایر زیبائیهای شیء جلوه کند. بنابراین بحث نور و پرداختن به آن می تواند در مباحث زیبائی شناسی و هنر جایگاه ویژه ای داشته باشد. از جمله علوم و هنرهایی که می توان به نقش نور در آن اشاره داشت ،هنر معماری است که بحث مفصلی را در زمینه روند بهره گیری از نور طبیعی به خود اختصاص می دهد. ابزار و وسایل روشنایی نیز به عنوان عواملی که تأمین کننده ی نور مصنوعی هستند ،مطرح می باشند. در هنر معماری نور یکی از اجزایی است که کنار عناصر و مفاهیم دیگر از قبیل ساختار ،نظم فضایی، مصالح، رنگ و ‏…‏ مطرح می شود و در طراحی به عنوان یک عنصر مجزا باید نقش خود را ایفا کند. یکی از مهمترین مشخصه های نور طبیعی، توالی و دگرگونی آن در طول روز است که باعث حرکت و تغییر حالت در ساعات مختلف می شود. در تاریخ نقاشی توجه به نور در دوره امپرسیونیست ها دیده می شود. هنگامی که نقاشان آتلیه های خود را ترک می کردند و در زیر نور خورشید با نور طبیعی مشغول نقاشی شدند. از مشخصات این سبک توجه به رنگ و نور در ساعات مختلف روز و انعکاس رنگ های اشیاء مختلف در یکدیگر و تأثیر رنگ های پیرامونی و به کار بردن رنگ های خاص و ناب می شد. این مقاله به بررسی نقش نور در معماری و معماری داخلی به عنوان یک جزء سازنده و مفهوم بخش می پردازد و در خاتمه امید بر این دارد که در آینده در ساختمان ها همانند نیاکانمان شاهد به کارگیری نور طبیعی به صورت یک عنصر کاملاً اثر بخش باشیم.
‏نور و بشر
‏نور در ‏معماری
‏زیبائی که به چشم می آید از پرتو نور و روشنائی است و گرنه در تاریکی ،زیبائی مفهومی ندارد.زیبائی حقیقتی با نور معرفت درک می گردد و زیبائی ظاهری با عزیزترین حس ما که بینائی است دیده می شود. نور و روشنایی چه ظاهری و چه عرفانی باعث می شود که زیبائی به چشم آید و رنگ و سایر زیبائیهای شیء جلوه کند. بنابراین بحث نور و پرداختن به آن می تواند در مباحث زیبائی شناسی و هنر جایگاه ویژه ای داشته باشد. از جمله علوم و هنرهایی که می توان به نقش نور در آن اشاره داشت ،هنر معماری است که بحث مفصلی را در زمینه روند بهره گیری از نور طبیعی به خود اختصاص می دهد. ابزار و وسایل روشنایی نیز به عنوان عواملی که تأمین کننده ی نور مصنوعی هستند ،مطرح می باشند. در هنر معماری نور یکی از اجزایی است که کنار عناصر و مفاهیم دیگر از قبیل ساختار ،نظم فضایی، مصالح، رنگ و ‏…‏ مطرح می شود و در طراحی به عنوان یک عنصر مجزا باید نقش خود را ایفا کند. یکی از مهمترین مشخصه های نور طبیعی، توالی و دگرگونی آن در طول روز است که باعث حرکت و تغییر حالت در ساعات مختلف می شود. در تاریخ نقاشی توجه به نور در دوره امپرسیونیست ها دیده می شود. هنگامی که نقاشان آتلیه های خود را ترک می کردند و در زیر نور خورشید با نور طبیعی مشغول نقاشی شدند. از مشخصات این سبک توجه به رنگ و نور در ساعات مختلف روز و انعکاس رنگ های اشیاء مختلف در یکدیگر و تأثیر رنگ های پیرامونی و به کار بردن رنگ های خاص و ناب می شد. این مقاله به بررسی نقش نور در معماری و معماری داخلی به عنوان یک جزء سازنده و مفهوم بخش می پردازد و در خاتمه امید بر این دارد که در آینده در ساختمان ها همانند نیاکانمان شاهد به کارگیری نور طبیعی به صورت یک عنصر کاملاً اثر بخش باشیم.
‏نور و بشر
‏از دوران ماقبل تاریخ همواره اجسام نورانی که تجسمی از یک شیء زنده را در ذهن بیدار ‏ ‏می کردند توسط بشر مورد ستایش و احترام قرار گرفته و مشتاقانه برایشان جشن می گرفتند،‏ ‏ ‏ ‏آن ها را عبادت کرده و می پرستیدند.این توجه بیش از اندازه به عنصر نور در اغلب فرهنگ های اولیه بشری و در جوامعی با آداب و رسوم و عقاید مذهبی متفاوت همچنان در طول زمان مشاهده می شود. برخی از جوامع نور خورشید را در تشریفات مذهبی شان به کار می بردند و برخی دیگر درخشش اجسام نورانی را به عنوان عامل ایجاد فعل و انفعالاتی رمزآلود جهت دست یابی به حیطه هایی ماورای دنیای زمینی تلقی می کردند. حتی امروزه در بسیاری از مدارس شرقی که به تدریس یوگا اشتغال دارند برای ایجاد تمرکز ذهنی از اجسام نورانی مانند لامپ، خورشید، ماه، بلور و نور آتش استفاده می کنند. در اغلب ادیان، نور نماد عقل الهی و منشأ تمام پاکی ها و نیکی ها است و خارج شدن انسان از تاریکی جهل و تابیده شدن نور معرفت در وجودش همواره یک هدف نهایی می باشد. در اثر تابیده شدن نور الهی به درون کالبد مادی، یعنی جایگاه نفس آدمی است که انسان به رشد و تکامل معنوی می رسد در نتیجه برای نمایش این تمثیل در معماری اغلب بناهای مذهبی نور به عنوان عنصری بارز و مستقل از سایر عناصر و مفاهیم به کار رفته در ساختمان به کار گرفته می شود به گونه ای که شعاع های آن به طور واضح در داخل کالبد مادی و تاریک حجم قابل مشاهده است. فضاهای عمیق و تاریک کلیساهای قرون وسطی و یا مساجد اسلامی که با عنصر نور مزین شده اند به خوبی قادر به انتقال یک حس روحانی و معنوی می باشند.انسان در چنین فضاهایی که با نوری ضعیف روشن می شوند با مشاهده سایه های مبهم از اشیاء و احجام در ذهن خود به کامل کردن تصاویر پرداخته و با این عمل به نوعی خلسه فرو‏ ‏ ‏ می رود که نتیجه آن یک حس نزدیکی به منبع وجود و هستی در درونش بیدار می شود.
‏تاریخچه بهره گیری از نور طبیعی در معماری ایران
‏دانستن روند بهره گیری از نور خورشید به اندازه روند شکل گیری مصالح و یا شکل های مختلف زیربنائی ساختمان جهت طراحی بسیار لازم می باشد.اولین تاریخی که ما از آن اطلاع داریم سده ی سوم هزاره چهارم ق.م می باشدکه در آن زمان جهت کسب نور و سایه از ایجاد اختلاف سطح در دیواره های خارجی استفاده می کردند. در شهر سوخته از هزاره های سوم و دوم ق.م از روی آثار خانه هایی که دیوار آنها تا زیر سقف باقی مانده بود می توان استنباط کرد که هر اطاق از طریق یک در به خارج ارتباط داشته و فاقد پنجره بوده اند، در دوره عیلام در حدود ‏۱۳۰۰‏ و ‏۱۴۰۰‏ ق.م نیز نمونه ای از پنجره های شیشه ای بدست آمده که شامل لوله هایی از خمیر شیشه می باشد که در کنار هم و در داخل یک قاب جای می گرفته و بطور حتم جهت روشن کردن داخل بنا مورد استفاده بود. از جمله کهنترین مدارک و نمونه های در و پنجره در معماری ایران را شاید بتوان در نقش قلعه های مادی در آثار دوره شاروکین یافت. از روی نقش برجسته آشوری می توان روزنه هایی را که بر روی برج ها ساخته شده اند تشخیص داد. در دوره هخامنشی در تخت جمشید وضع درها به خوبی روشن و پاشنه گرد آن ها اغلب به جای مانده است، همچنین در این کاخ ها بالای درها و حتی بام ها، روزن ها و جام خانه هایی داشته وگرنه فضای بزرگ و سرپوشیده آن ها را چگونه چند جفت در که اغلب بسته بوده روشن می کرده است؟
‏در اصل از خصوصیات سبک پارسی، تعبیه سایبان و آفتابگیر منطقی و ضروری برای ساختمان هاست. در این دوره از اصل اختلاف سطح، جهت جذب نور به داخل استفاده می شد. بر اساس تحقیقات پروفسور ولفانگ معلوم شده که انحراف زوایای بناهای تخت جمشید بر اساسی بنیاد گذاشته شده که بوسیله ایجاد سایه روشن های گوناگون تعیین روز اول سال و فصول مختلف میسر شده و این انحراف به معمار ایرانی اجازه می داده مکان های مورد نیاز برای زیستن را به صورتی بسازد که در فصول مختلف سال هر خانه به مقدار لازم از آفتاب و روشنایی استفاده نماید. از نورگیری بناهای اشکانی اطلاع چندانی در دست نیست ولی سرپرسی سایکس در مورد کاخ هاترا می گوید: تالارهای این مجموعه تماما دارای سقف چوبی بوده اند. ارتفاع آن ها مختلف و نیز روشنائی آن ها از دهنه و هلال هایی بوده که به سمت مشرق باز می شدند. از روی تصویر بازسازی شده نسا که نورگیری بنا را توسط سقف خرپا نشان می دهد این احتمال را ممکن می سازد که اشکانیان از این روش برای نورگیری بنا استفاده می کردند. ساسانیان تمایل به نشان دادن تضاد بین سایه و روشنائی داشته اند و این امر د رتمام بناهای آن ها مشهود است. نوک

 

دانلود فایل

تحقیق تاریخچه نور 16 ص

تحقیق تاریخچه نور 16 ص

تحقیق-تاریخچه-نور-16-صلینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه

 قسمتی از متن word (..doc) : 
 

‏موضوع:
‏تعریف واقعی نور
‏تعریف دقیقی برای نور وجود ندارد، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی با هم ایجاد یک نظریه نامتناقض و بدون ابهام ‏می کنند‏ که تمام پدیده‌های نوری را توجیه ‏می کنند‏.
‏نظریه ماکسول درباره انتشار نور بحث می‌‌کند در حالیکه نظریه کوانتومی بر هم کنش نور و ماده یا جذب و نشر آن را شر‏ح می‌‌دهد ازآمیختن این دو نظریه‏،‏ ‏نظریه جامعی که کوانتوم الکترو دینامیک نام دارد،شکل می‌‌گیرد. چون نظریه‌های الکترو مغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح ‏می کنند‏ منصفانه می‌‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. سرشت نور کاملاً شناخته شده است اما باز هم این پرسش هست که واقعیت نور چیست؟
‏گسترده طول موجی نور
‏نور گستره طول موجی وسیعی دارد چون با نور مرئی کار می‌‌کنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام می‌‌گیرد امّا روش‌های مورد بحث می‌‌تواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود 400 ‏نانومتر‏ (آبی) تا 700 نانومتر (قرمز) گسترده است که در وسط آن طول موج 555 نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌‌گیرد و تا ‏فروسرخ‏ دور گسترش می‌‌یابد. خواص نور و نحوه تولید سرعت نور در محیط‌های مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است‏.‏ در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. به‌وسیله ‏کاواک‏ جسم سیاه می‌‌توان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موج‌های مختلف مشاهده شده امّا مشهورترین آن نور سفید است که یک نور مرکبی از سایر ‏طول موج‏ هاست. تک طول موج‌ها آن را به‌وسیله ‏لامپ‌های‏ تخلیه الکتریکی که معرف ‏طیف‌های‏ اتمی موادی هستند که داخلشان تعبیه شده می‌‌توان تولید کرد.
‏ماهیت‌های متفاوت نور
‏ماهیت ذره‌ای
‏ایزاک نیوتن‏ در کتاب خود در رساله‌ای درباره نور نوشت: پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر ‏می شوند‏. احتمالاً نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیط‌های ‏همگن‏ به نظر می‌‌رسد در امتداد خط مستقیم منتشر ‏می شوند‏ که این امر را قانون می‌‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن ‏سایه‏ است.
‏ماهیت موجی
‏هم‌زمان با نیوتن، ‏کریسیتان هویگنس‏ (Christiaan Huygens‏)، (1695-1629)‏ ‏طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌‌شود به خاطر داشته باشید که هویگنس با به کاربردن امواج اصلی و موجک‌های ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور‏ توجیه ‏می شوند‏ پدیده‌های تداخلی‏‏اند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا ‏پراش‏ نور در اطراف مانع.
‏ماهیت الکترومغناطیس
‏بیشتر به خاطر نبوغ ‏جیمز کلارک ماکسول‏ ‏(James Clerk Maxwell‏)، )‏ (‏1879-1831) ‏است که ما امروزه می‌‌دانیم نور نوعی انرژی ‏الکترومغناطیسی‏ است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌‌شود. گسترده کامل امواج الکتروو مغناطیسی شامل: موج رادیویی، تابش ‏فروسرخ‏،‏ نور مرئی از قرمز تا بنفش، تابش ‏فرابنفش‏، پرتو ایکس و ‏پرتو گاما‏ می‌‌باشد.
‏ماهیت کوانتومی نور
‏طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول سده بیستم به وسیله پلانک و آلبرت ‏انیشتین‏ و بور برای اولین بار پیشنهاد شد، انرژی الکترو مغناطیسی ‏کوانتیده‏ است، یعنی جذب یا نشر انرژی میدان الکترو مغناطیسی به مقدارهای گسسته‌ای به نام "‏فوتون‏" انجام می‌‌گیرد.
‏نظریه مکملی
‏نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابر‏ا‏ین گفته می‌‌شود که‏ نور خاصیت دو‏‏گانه‌ای دارد بر خی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آن را نشان می‌‌دهد و برخی دی‏گ‏ر مانند پدیده ‏فتوالکتریک‏، پدیده کامپتون و ... با خاصیت ذره‌ای نور قابل توضیح هستند.
‏پرتوهای دیگر:
‏فروسرخ:‏ ‏پرتو فروسرخ یا مادون قرمز تابشی است الکترومغناطیسی‏ ‏با طول موجی طولانی‏‏تر از نور مرئی اما کوتاهتر از تابش ریزموج. از آنجا که سرخ، رنگ نور مرئی با درازترین طول موج را تشکیل می‌دهد به این پرتو، فروسرخ یعنی پایین تر از سرخ می‌گویند.تابش فروسرخ طول موجی میان nm‏ ‏۷۰۰ و‏ nm‏1‏دارد.
‏گاما:‏ ‏با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی است، آن فاقد بار و جرم سکون است. اشعه گاما موجب برهم‏‏کنشهای کولنی نمی‌گردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند. معمولاً اشعه گاما تنها یک یا چند برهم‏‏کنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند. در این برهم‏‏کنش‌ها اشعه گاما یا بطور کامل ناپدید می‌‌گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد.فروپاشی گاما در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد. معادله عمومی فروپاشی گاما بصورت زیر است:
AZX‏
‏که در آنX‏ و ‏*X‏ به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A‏) و عدد اتمی (Z‏) همراه نیست.
‏حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود.
‏حالتهای فروپاشی گاما‏:
‏ نشر اشعه گامای خالص:‏ ‏در این حالت فروپاشی گاما، اشعه گامای منتشر شده به‌وسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از 2 کیلو الکترون ولت تا 7 میلیون الکترون ولت است، تک انرژی است. این انرژی‏‏های گذارها بین حالت کوانتومی هسته بسیار نزد‏یک هستند. مقدار کمی از انرژی پس‏‏زنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و می‌توان از آن صرف‏‏نظر کرد.

‏حالت فروپاشی بصورت تبدیل داخلی:‏ ‏در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون ا‏و‏ربیتال برانگیخته می‌گردد، که سپس آن الکترون از اتم دفع می‌شود. اشعه گاما منتشر نمی‌شود. بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است. الکترونهای تبدیل داخلی تک انرژی هستند. انرژی آنها معادل انرژی گذار ترازهای هسته‌ای درگیر منهای انرژی پیوندی الکترون اتمی است.
‏با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در ا‏و‏ربیتال اتمی می‌شود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد.

‏حالت فروپاشی بصورت جفت:‏ ‏برای گذارهای هسته‌ای با انرژی‌های بزرگ‌تر از 1.02 میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب می‌شود. در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار می‌رود.
‏انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و 1.02 میلیون الکترون ولت مورد نیاز برای تولید جفت است. پوزیترون تولید شده در این فرآیند نابود خواهد شد.
‏نور و امواج الکترومغناطیس
‏امروزه م‏ی‏ دان‏ی‏م ‏ک‏ه نور ‏ی‏ک‏ موج ال‏ک‏ترمغناط‏ی‏س‏ی‏ است و بخش بس‏ی‏ار ‏ک‏وچ‏ک‏ی‏ از ط‏ی‏ف ال‏ک‏ترمغناط‏ی‏س‏ی‏ را تش‏کی‏ل م‏ی‏ دهد. ‏بنابرا‏ی‏ن برا‏ی‏ شناخت نور با‏ی‏ست‏ی‏ به بررس‏ی‏ امواج ال‏ک‏ترومغناط‏ی‏س‏ی‏ پرداخت. اما از ‏آنجا‏ی‏ی‏ک‏ه م‏ک‏ان‏ی‏ک‏ ‏ک‏لاس‏ی‏ک‏ قادر به توض‏ی‏ح ‏ک‏امل امواج ال‏ک‏ترومغناط‏ی‏س‏ی‏ ن‏ی‏ست، الزاماً ‏با‏ی‏ست‏ی‏ به م‏ک‏ان‏ی‏ک‏ ‏ک‏وانتوم مراجعه ‏ک‏رد. اما قبل از وارد شدن به م‏ک‏ان‏ی‏ک‏ ‏ک‏وانتوم لازم ‏است با برخ‏ی‏ از خواص نور آشنا شد و دل‏ی‏ل نارسا‏ی‏ی‏ م‏ک‏ان‏ی‏ک‏ ‏ک‏لاس‏ی‏ک‏ را دانست. لذا در ‏ا‏ی‏ن فصل دانش نور را تا پ‏ی‏ش از ارائه شدن رابطه‏ی‏ مشهور پلان‏ک‏ بررس‏ی‏ م‏ی‏ک‏ن‏ی‏م و در ‏فصل جداگانه‏‏ا‏ی‏ خواص امواج ال‏ک‏ترومغناط‏ی‏س‏ی‏ بعد از م‏ک‏ان‏ی‏ک‏ ‏ک‏وانتوم و نسب‏ی‏ت بررس‏ی ‏خواهد شد.
‏خواص نور
‏نخست‏ی‏ن ‏مسئله‏‏ا‏ی‏ ‏که ‏مهم جلوه م‏ی‏ک‏رد ا‏ی‏ن بود ‏ک‏ه نور چ‏ی‏ست؟ از آنجا‏ی‏ی‏ک‏ه عامل د‏ی‏دن بود و در ‏تار‏یک‏ی‏ چ‏ی‏ز‏ی‏ د‏ی‏ده نم‏ی‏شد، سئوال ا‏ی‏ن بود ‏ک‏ه نور چ‏ی‏ست؟ چرا م‏ی‏ب‏ی‏ن‏ی‏م و نور چگونه و ‏توسط چه چ‏ی‏رز‏ی‏ تول‏ی‏د م‏ی‏شود؟ بالاخره ا‏ی‏ن نظر‏ی‏ه پ‏ی‏روز شد ‏ک‏ه نور توسط اجسام من‏ی‏ر ‏نظ‏ی‏ر خورش‏ی‏د و مشعل تول‏ی‏د م‏ی‏شود. بعد از آن مسئله انع‏ک‏اس نور مورد توجه قرار گرفت ‏و ا‏ی‏ن‏ک‏ه چرا برخ‏ی‏ از اجسام بهتر از سا‏ی‏ر اجسام نور را باز تابش ‏می کنند‏؟ چرا نور از ‏برخ‏ی‏ اجسام عبور م‏ی‏ک‏ند و از برخ‏ی‏ د‏ی‏گر عبور نم‏ی‏ک‏ند؟ چرا نور علاوه بر آن‏ک‏ه سبب ‏د‏ی‏دن است موجب گرم شدن ن‏ی‏ز م‏ی‏شود؟ نور چگونه منتقل م‏ی‏شود؟ سرعت آن چقدر است؟ و ‏سرانجام ماه‏ی‏ت نور و نحوه‏ی‏ انتقال آن چ‏ی‏ست؟
‏نخست‏ی‏ن آزما‏ی‏ش مهم نور توسط ‏ن‏ی‏وتن در سال 1666 انجام شد. و‏ی‏ ‏ی‏ک‏ دسته اشعه نور خورش‏ی‏د را ‏ک‏ه از ش‏ک‏اف بار‏یک‏ی‏ وارد ‏اتاق تار‏یک‏ی‏ شده بود، بطور ما‏ی‏ل بر وجه ‏ی‏ک‏ منشور ش‏ی‏شه‏‏ا‏ی‏ مثلث القاعده‏‏ا‏ی‏ تابان
‏ی‏د‏. ‏ا‏ی‏ن دسته هنگام ورود در ش‏ی‏شه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در ‏همان جهت منحرف شد‏.‏
‏ن‏ی‏وتن دسته اشعه خارج شده را بر ‏ی‏ک‏ پرده سف‏ی‏د انداخت‏. ‏و‏ی‏ مشاهده ‏ک‏رد ‏ک‏ه به جا‏ی‏ تش‏کی‏ل ‏ی‏ک‏ ل‏ک‏ه سف‏ی‏د نور، دسته اشعه در نوار رنگ‏ی‏ن‏ی‏ ‏ک‏ه به ‏ترت‏ی‏ب مر‏ک‏ب از رنگها‏ی‏ سرخ، نارنج‏ی‏، زرد، سبز، آب‏ی‏ و بنفش است پرا‏ک‏نده شده است. نوار ‏رنگ‏ی‏ن‏ی‏ را ‏ک‏ه از مولفه‏‏ها‏ی‏ نور تش‏کی‏ل م‏ی‏شود، ط‏ی‏ف م‏ی‏نامند.
‏ن‏ی‏وتن نظر داد ‏ک‏ه نور از ذرات بس‏ی‏ار ر‏ی‏ز ‏-‏دانه‏‏ها‏-‏ تش‏کی‏ل م‏ی‏شو‏د ‏ک‏ه با سرعت ز‏ی‏اد حر‏ک‏ت م‏ی‏ک‏ند‏. ‏علاوه بر آن به نظر ن‏ی‏وتن نور در مح‏ی‏ط غل‏ی‏ظ باسرعت ب‏ی‏شتر‏ی‏ حر‏ک‏ت م‏ی‏ک‏ند. اگر نظر ‏ن‏ی‏وتن در مورد سرعت نور درست م‏ی‏بود م‏ی‏با‏ی‏ست سرعت نور در ش‏ی‏شه ب‏ی‏شتر از هوا باشد ‏ک‏ه م‏ی‏دان‏ی‏م درست ن‏ی‏س‏ت.
‏هو‏ی‏گنس در سال 1690 رساله‏‏ا‏ی‏ در شرح نظر‏ی‏ه موج‏ی‏ نور ‏منتشر ‏ک‏رد. طبق اصل هو‏ی‏گنس حر‏ک‏ت نور به صورت موج‏ی‏ است و از چشمه‏‏ها‏ی‏ نور‏ی‏ به تمام ‏جهات پخش م‏ی‏شود. هو‏ی‏گنس با به ‏ک‏اربردن امواج اصل‏ی‏ و موج‏ک‏‏ها‏ی‏ ثانو‏ی‏ قوان‏ی‏ن بازتاب ‏و ش‏ک‏ست را تشر‏ی‏ح ‏ک‏رد. هو‏ی‏گنس نظر داد ‏ک‏ه سرعت نور در مح‏ی‏ط‏‏ها‏ی‏ ش‏ک‏ست دهنده ‏ک‏متر از ‏سرعت نور در هوا است ‏ک‏ه درست است.
‏پ‏ی‏روز‏ی‏ نظر‏ی‏ه ‏موج‏ی‏ نور
‏نظر‏ی‏ه دانه‏‏ا‏ی‏ ن‏ی‏وتن هرچند بعض‏ی‏ از سئوالات را پاسخ م‏ی‏گفت، اما باز هم پرسش‏‏ها‏یی‏ وجود داشت ‏ک‏ه ا‏ی‏ن نظر‏ی‏ه نم‏ی‏توانست برا‏ی‏ آنها جواب قانع ‏ک‏ننده‏‏ا‏ی‏ ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد ب‏ی‏شتر منحرف ‏می شوند‏؟ ‏چرا دو دسته اشعه‏ی‏ نور م‏ی‏توانند بدون آن‏ک‏ه بر هم اثر بگذارند، از هم بگذرند؟
‏اما بر اساس نظر‏ی‏ه موج‏ی‏ هو‏ی‏گنس، دو دسته اشعه‏ی‏ نوران‏ی‏ م‏ی‏توانند بدون آن‏ک‏ه ‏مزاحمت‏ی‏ برا‏ی‏ هم فراهم ‏ک‏نند از ‏یک‏د‏ی‏گر بگر‏یز‏ند. هو‏ی‏گنس نم‏ی‏دانست ‏ک‏ه نور موج عرض‏ی‏ است ‏ی‏ا مو‏ج‏ طول‏ی‏ و طول مو‏ج‏‏ها‏ی‏ نور مرئ‏ی‏ را ن‏ی‏ز نم‏ی‏دانست. ول‏ی‏ چون نور در خلاء ن‏ی‏ز ‏منتشر م‏ی‏شود، و‏ی‏ مجبور شد مح‏ی‏ط ‏ی‏ا رسانه حامل‏ی‏ برا‏ی‏ انتشار ا‏ی‏ن امواج در نظر ‏بگ‏ی‏رد. هو‏ی‏گنس تصور م‏ی‏ک‏رد ‏ک‏ه ا‏ی‏ن امواج توسط اتر منتقل ‏می شوند‏. به نظر و‏ی‏ اتر ‏مح‏ی‏ط و ما‏ی‏ع خ‏ی‏ل‏ی‏ سب‏ک‏ی‏ است و همه جا، حت‏ی‏ م‏ی‏ان ذرات ماده ن‏ی‏ز وجود دارد.
‏نظر‏یه‏ هو‏ی‏گنس ن‏ی‏ز بطور ‏ک‏امل رضا‏ی‏ت بخش نبود، ز‏ی‏را نم‏ی‏توانست توض‏ی‏ح دهد ‏ک‏ه ‏چرا سا‏ی‏ه‏ی‏ واضح تش‏کی‏ل م‏ی‏شود، ‏ی‏ا چرا امواج نور نم‏ی‏توانند مانند امواج صوت از‏ ‏موانع بگذرند؟
‏نظریهی ‏موج‏ی‏ و دانه‏‏ا‏ی‏ نور ب‏ی‏ش از ‏یک‏صد‏‏سال با هم مجادله ‏ک‏ردند، اما نظر‏ی‏ه‏ی‏ دانه‏‏ا‏ی‏ ن‏ی‏وتن ب‏ی‏شتر مورد قبول واقع شده بود، ز‏ی‏را از ‏یک‏طرف منطق‏یتر به‏نظر م‏ی‏رس‏ی‏د و از طرف د‏ی‏گر با نام ن‏ی‏وتن همراه بود. با وجود ا‏ی‏ن هر دو نظر‏ی‏ه ‏فاقد شواهد پشتوانه‏‏ا‏ی‏ قو‏ی‏ بودند. تا آن‏ک‏ه بتدر‏ی‏ج دلا‏ی‏ل‏ی‏ بر موج‏ی‏ بودن نور ارائه ‏گرد‏ی‏د .
‏لئونارد او‏ی‏لر ف‏ک‏ر ‏امواج دوره‏‏ا‏ی‏ را ت‏ک‏م‏ی‏ل ‏ک‏رد، همچن‏ی‏ن دل‏ی‏ل رنگ‏‏ها‏ی ‏گوناگون را مر‏بوط به تفاوت طول موج آنها دانست‏ و ا‏ی‏ن گام بلند‏ی‏ بود. در سال 1800 ‏و‏ی‏ل‏ی‏ام هرشل آزما‏ی‏ش بس‏ی‏ار ساده اما جالب‏ی‏ انجام داد. و‏ی‏ ‏ی‏ک‏ دسته اشعه‏ی‏ نور خورش‏ی‏د ‏را از منشور عبور داد و در ماورا‏ی‏ انتها‏ی‏ سرخ ط‏ی‏ف حاصل دماسنج‏ی‏ نصب ‏ک‏رد. ج‏ی‏وه در ‏دما‏‏سنج بالا رفت، بد‏ی‏ن ترت‏ی‏ب هرشل تابش‏ی‏ را ‏ک‏شف ‏ک‏رد ‏ک‏ه به تابش ز‏ی‏ر قرمز مشهور شد‏.
‏در هم‏ی‏ن هنگام ‏ی‏وهان و‏ی‏لهلم ر‏ی‏تر انتها‏ی‏ د‏ی‏گر ط‏ی‏ف را ‏ک‏شف ‏ک‏رد. و‏ی‏ در‏ی‏افت ‏ک‏ه ‏ن‏ی‏ترات نقره ‏ک‏ه تحت تاث‏ی‏ر نور آب‏ی‏ ‏ی‏ا بنفش به نقره‏ی‏ فلز‏ی‏ تجز‏ی‏ه و رنگ آن ت‏ی‏ره م‏ی‏شود، اگر در ورا‏ی‏ ط‏ی‏ف، در جا‏ی‏ی‏ک‏ه بنفش محو م‏ی‏شود، ن‏ی‏ترات نقره قرار گ‏ی‏رد حت‏ی‏ زودتر ‏تجز‏ی‏ه م‏ی‏شود. ر‏ی‏تر نور‏ی‏ را ‏ک‏شف ‏ک‏رد ‏ک‏ه ما ا‏ک‏نون آن را فوق بنفش م‏ی‏نام‏ی‏م. بد‏ی‏ن ‏ترت‏ی‏ب هرشل و ر‏ی‏تر از مرزها‏ی‏ ط‏ی‏ف مرئ‏ی‏ گذشتند و در قلمروها‏ی‏ جد‏ی‏د تابش پا نهادند‏. ‏در ا‏ی‏ن هنگام دلا‏ی‏ل جد‏ی‏د‏ی‏ برا‏ی‏ موج‏ی ‏بودن نور توسط ‏ی‏انگ و فرنل ارائه گرد‏ی‏د‏.
‏در سال 1801 توماس ‏ی‏انگ دست به آزما‏ی‏ش بس‏ی‏ار مهم‏ی‏ زد. و‏ی‏ ‏ی‏ک‏ دس‏ت‏ه اشعه‏ی ‏بار‏ی‏ک‏ نور را از دو سوراخ نزد‏ی‏ک‏ بهم گذ‏ران‏ی‏د و بر پرده‏‏ا‏ی‏ ‏ک‏ه در عقب ا‏ی‏ن سوراخ نصب ‏ک‏رده بود تابان‏ی‏د. احتمال م‏ی‏رفت ‏ک‏ه اگر نور از ذرات تش‏کی‏ل شده باشند، محل تلاق‏ی‏ دو ‏دسته اشعه‏‏ا‏ی‏ ‏ک‏ه از سوراخ‏‏ها عبور ‏ک‏رده‏‏اند، بر رو‏ی‏ پرده روشن‏‏تر از جاها‏ی‏ د‏ی‏گر ‏باشد. اما نت‏ی‏جه‏‏ا‏ی‏ ‏ک‏ه ‏ی‏انگ به دست آورد چ‏ی‏ز‏ی‏ د‏ی‏گر بود. بر رو‏ی‏ پرده ‏ی‏ک‏ گروه ‏نوارها‏ی‏ روشن تش‏کی‏ل شده بود ‏ک‏ه هر ‏ی‏ک‏ به وس‏ی‏له‏ی‏ ‏ی‏ک‏ نوار تار‏ی‏ک‏ از د‏ی‏گر‏ی‏ جدا م‏ی‏شد‏. ‏ا‏ی‏ن پد‏ی‏ده به سهولت با نظر‏ی‏ه موج‏ی‏ نور توض‏ی‏ح داده شد‏.

 

دانلود فایل

تحقیق بررسی ماهیت نور و ارتباط آن با پدیده لیزر 124 ص

تحقیق بررسی ماهیت نور و ارتباط آن با پدیده لیزر 124 ص

تحقیق-بررسی-ماهیت-نور-و-ارتباط-آن-با-پدیده-لیزر-124-صلینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 111 صفحه

 قسمتی از متن word (..doc) : 
 

‏1
‏فصل اول
‏بررسی ماهیت نور و ارتباط آن با پدیده لیزر
‏1-1- ماهیت نور
‏یونانی ها اولین کسانی هستند که کوشیدند طبیعت نور و چگونگی دیدن را توضیح دهند، بعد از آن، ظهور علوم تجربی دو نظریه مترادف را به ارمغان آورد. یکی از آنها نطریه ذره‏‌‏ای نیوتن بود که نور را متشکل از باریکه‏‌‏ای از ذرات دانسته که این ذرات تابع قوانین حرکت می‏‌‏باشند. نظریه دیگر نظریه موجی هوک و هویگنس است که طبیعت موجی را برای نور پیشنهاد کردند. پذیرش هر نظریه مستلزم توجیه پدیده‏‌‏های نور مانند انعکاس، تداخل ، شکست، پراش، فتوالکتریک، جذب و گسیل و ... می‏‌‏باشد و هر نظریه قادر است بعضی از پدیده های ذکر شده را توجیه کند برای مثال پدیده تداخل اولین بار توسط یانگ در سال 1801 ارائه شد که فقط با در نظر گرفتن نظریه موجی قابل توضیح است. پدیده پراش با توجه به اصل هویگنس و ایجاد موجک‏‌‏های ثانوی فقط بر اساس نظریه ‏موجی قابل توجیه است که ایشان پیشنهاد کرد که پلاریزاسیون نور فقط به دلیل عرضی بودن امواج نور اتفاق می‏‌‏افتد و از این رو نتیجه می شود که ارتعاشات امواج نور بر امتداد انتشار آنها عمود است برخلاف امواج صوتی که به صورت طولی بوده و امتداد ارتعاش ذرات محیط در امتداد انتشار امواج صوتی است. با پیشرفت علم و فهم بیشتر طبیعت نور، ماکسول در سال 1864 به این نتیجه رسید که نور به مانند امواج الکترومغناطیس است که دارای سرعت‏ ، فرکانس ‏ و طول موج ‏ می‏‌‏باشد. امروزه برای ما کاملا ثابت شده که امواج نور از دو مولفه میدان الکتریکی و مغناطیسی عمود بر هم تشکیل شده اند و جهت انتشار امواج عمود بر امتداد ارتعاش این دو است.
‏در جدول 1-1 انواع امواج الکترومغناطیس و مشخصات آنها آورده شده است . گستره امواج ‏مشخص شده در جدول شامل نواحی مختلفی است که مرز مشخصی برای آنها وجود ندارد.
‏2
‏در سال 1887 هرتز موفق به تولید امواج الکترومغناطیس نامرئی شد. امروزه ‏ما امواج الکترومغناطیس با فرکانس‏‌‏های بین ‏ را می‏‌‏شناسیم.
‏اما پدیده‏‌‏های همچون فتوالکترویک، جذب و گسیل، توسط نظریه موجی نور قابل توجیه نیست.
‏در پدیده فتوالکتریک تابش نور برخورد کننده به سطح فلز الکترون‏‌‏های آزاد می‏‌‏کند، رها شدن الکترون وقتی اتفاق می‏‌‏افتد که فرکانس پرتو تابش به حد کافی بالا باشد برای مثال در حالی که نور بسیار قوی قرمز قادر به ایجاد فوتوالکترون نیست نور آبی با شدت کم قادر به تولید فوتوالکترون است.
‏چرا که انرژی جنبشی کافی دارد. بر اساس نظریه ذره‏‌‏ای نور در سال 1905 انیشتین به سادگی پدیده فتوالکتریک را توجیه کرد. ایشان نور برخورد کننده را متشکل از بسته های کوچک انرژی یا ذراتی به نام فوتون در نظر گرفت که انرژی هر فوتون متناسب با فرکانس آن است. E=hv‏ ‏که h‏ ثابت پلانک و v‏ فرکانس می‏‌‏باشد فوتون برخورد کننده می‏‌‏تواند انرژی خود را به یک الکترون بدهد و بر نیروی فتوالکتریک نیست، نه می‏‌‏تواند علت عدم تولید فوتوالکترون ها را وقتی نور قرمز با شدت زیاد به کار برده می‏‌‏شود توضیح دهد و نه گسیل خود به خودی الکترون‏‌‏ها وقتی که چشمه مناسب نور به کار گرفته می‏‌‏شود. بنابراین به نظر می‏‌‏رسد هر دو نظریه رقیب در مورد نور ، نه تنها مخالف هم نبوده بلکه مکمل یکدیگر می‏‌‏باشند و ما بایستی هر دوی آنها را بپذیریم، مادامیکه نور ، با نور برهم کنش انجام می‏‌‏دهد مانند پدیده تداخل نور ما نظریه موجی نور را در نظر می‏‌‏گیریم و وقتی که نور با ماده برهم کنش دارد مانند پدیده فوتوالکتریک ما نظریه ذره‏‌‏ای نور را به کار می‏‌‏بریم، این وضعیت به آنچه که طبیعت دو گانه تابش نامیده می‏‌‏شود منجر می‏‌‏گردد.
‏4
‏1‏-2 ‏–‏ گسیل و جذب نور
‏اینشتین اثر فوتوالکتریک را بر اساس کارهای قبلی پلانک توجیه نمود و نظریه کوانتومی نور برای بیان چگونگی تابش جسم سیاه را ارائه کرد. پلانک گسیل امواج الکترومغناطیس را به نوسان کننده هائی در داخل جسم سیاه نسبت داد که ایجاد میدان الکتریکی می‏‌‏کنند. فرض مهم این است که این نوسان کننده ها می‏‌‏توانند مقادیر انرژی معینی را داشته باشند و این انرژی مضرب صحیحی از E=hv‏ است. مطلی که پلانک معرفی نموده امروزه به نظریه کوانتومی معروف است. اهمیت نظریه کوانتومی در بحث ما این است که سیستم های اتمی دارای ترازهای انرژی مجزا یا حالت های انرژی مجزا هستند.
‏در سال 1823 نشان داده شد که هر عنصر اتمی یک طیف مشخصی را تولید می‏‌‏کند لیکن توضیح آن تا سال 1913 بوسیله بوهر میسر نشد، بوهر نظریه‏‌‏ای ارائه داد که او را قادر ساخت طول موج طیف ساده ترین اتم ها یعنی هیدورژن را پیش بینی کند. او مدل اتمی را در فورد رابه کار برد که در آن مدل، اتم از یک هسته سنگین با بار مثبت به وسیله تعدادی بارهای منفی به نام الکترون احاطه شده تشکیل شده است و اتم های هر جسم دارای تعداد معینی الکترون می‏‌‏باشند، برای توضیح این که چرا الکترون ها نمی‏‌‏توانند جذب بار مثبت هسته شوند او فرض کرد که الکترون ها روی مدارهائی به دور هسته مانند حرکت سیارات به دور خورشید در حرکت هستنمد. نیروهای جاذبه‏‌‏ای که احتیاج است تا الکترون بر روی مدار معینی باقی بماند با توجه به جاذبه کولنی هسته مثبت روی الکترون منفی تامین می‏‌‏گردد‏ و می‏‌‏توانیم بنویسیم:
V, e,m‏ جرم،‏‌‏بار و سرعت الکترون و r‏ شعاع مدار و نفوذپذیری در خلاء است. بوهر فرض کرد تنها الکترون هیدروژن مجاز است فقط مدارهای معینی را اشغال کند. وقتی که الکترون در یکی از این مدارهای مجاز یا حالت پایه قرار دارد هیچ اثری توسط اتم ساطع نمی شود. هر یک از این مدارهای مجاز به یک تراز معین یا حالت انرژی معی مربوط می
‏4
‏‌‏شوند. برای توضیح خطوط طیفی ‏هیدروژن ، بوهر فرض کرد که الکترون و به طبع اتم، با حرکت از یک مدار با انرژی بالاتر ( دوتر از هسته) به یک مدار با انرژی کمتر ( نزدیک تر به هسته ) انرژی از دست می‏‌‌‏دهد. این انرژی به صورت یک فوتون با انرژی hv‏ است که ‏
‏که در این رابطه ‏ به ترتیب انرژی الکترون قبل و بعد از انتقال است از آنجائی که مدارهای متعدد و مجزایی وجود دارند بنابراین انتقالات مختلفی نیز ممکن است انجام شود از این رو اتم هیدروژن فرکانس های مختلفی را می تواند گسل دارد. ‏(شکل 1-1)
‏به طور کلی هر اتم تمایل دارد در حالت های انرژی پایین تر قرار گیرد. از این رو برای ایجاد طیف اتم هیدروژن لازم است الکترون ها را با تحریک کردن به ترازهای بالاتر بفرستیم. این عمل با حرارت و یا برخورد با الکترون های دیگر در لوله تخلیه الکتریکی و یا به کمک تابش با طویل موج های مناسب انجام پذیر است. هر طول موجی که توسط اتم در حالت تحریک گسیل می شود میتواند توسط آن وقتی که در ترازهای پایین انرژی قرار دارد جذب شود.
‏البته فوتون های برخورد کننده باید خیلی نزدیک به اختلاف انرژی بین دو تراز انرژی اتمی درگیر باشد. در این حالت جذب تشدیدی نامیده می‏‌‏شود. به روش مشابهی بوهر قادر بود که خطوط طیفی دیگر اتم های چند الکترونی را که طیف پیچده‏‌‏تری دارند توضیح دهد. نظریه بوهر توصیف خوبی از حالت اتم بر پایه فیزیک کلاسیک و فیزیک مدرن که اساسا بر فیزیک کوانتومی استوار است، به دست می

 

دانلود فایل

تحقیق بتن عبور دهنده ی نور 15 ص

تحقیق بتن عبور دهنده ی نور 15 ص

تحقیق-بتن-عبور-دهنده-ی-نور-15-صلینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 20 صفحه

 قسمتی از متن word (..doc) : 
 

‏1
‏بتن عبور دهنده ی ‏نور(لایتراکان‏)
‏«‏لایتراکان‏»‏،‏ Litracon»Light Transmiting Concrete‏، بتن عبور ‏دهنده نور، امروزه به عنوان یک متریال ساختمانی جدید با قابلیت استفاده بالا مطرح ‏است. این متریال ترکیبی از فیبر های نوری و ذرات بتن است و می تواند به عنوان بلوک ‏ها و یا پانل های پیش ساخته ساختمانی مورد استفاده قرار گیرد. فیبر ها بخاطر اندازه ‏کوچکشان با بتن مخلوط شده و ترکیبی از یک متریال دانه بندی شده را تشکیل می دهند.‏ ‏به این ترتیب نتیجه کار صرفا ترکیب دو متریال شیشه و بتن نیست، بلکه یک متریال جدید ‏سوم که از لحاظ ساختار درونی و همچنین سطوح بیرونی کامل همگن است، به دست می آید.
‏فیبر های شیشه باعث نفوذ نور به داخل بلوک ها می شوند. جالب تریت ‏حالت این پدیده نمایش سایه ها در وجه مقابل ضلع نور خورده است. همچنین رنگ نوری که ‏از پشت این بتن دیده می شود ثابت است به عنوان مثال اگر نور سبز به پشت بلوک بتابد ‏در جلوی آن سایه ها سبز دیده می شوند. هزاران فیبر شیشه ای نوری به صورت موازی کنار ‏هم بین دو وجه اصلی بلوک بتنی قرار می گیرند. نسبت فیبر ها بسیار کم و حدود 4 درصد ‏کل میزان بلوک ها است. علاوه بر این فیبر ها بخاطر اندازه کوچکشان با بتن مخلوط شده ‏و تبدیل به یک جزء ساختاری می شوند بنابر این سطح بیرونی بتن همگن و یکنواخت باقی ‏می ماند. در تئوری، ساختار یک دیوار ساخته شده با بتن عبور دهنده نور، می تواند تا ‏چند متر ضخامت داشته باشد زیرا فیبر ها تا 20متر بدون از دست دادن نور عمل می کنند ‏و در دیواری با این ضخامت باز هم عبور نور وجود دارد.
‏2
‏ساختار های باربر ‏هم می توانند از این بلوکها ساخته شوند. زیرا فیبر های شیشه ای هیچ تاثیر منفی روی ‏مقاومت بتن ندارند. بلوکها می توانند در اندازه ها ی متنوع و با عایق حرارتی خاص ‏نصب شده روی آنها تولید شوند.
‏این متریال در سال 2001 توسط یک معمار مجار به نام «آرون ‏لاسونسزی» اختراع شد و به ثبت رسید. این معمار زمانیکه در سن 27 سالگی در کالج ‏سلطنتی هنر های زیبای استکهلم مشغول به تحصیل بود این ایده را بیان کرد و در سال 2004 ‏شرکت خود را با نام لایتراکان تاسیس کرد و با توجه به نیاز و تمایل جامعه ‏امروز به استفاده از مصالح جدید ساختمانی، از سال 2006 با شرکت های بزرگ صنعتی به ‏توافق رسیده و تولید انبوه آن به زودی آغاز خواهد شد...
‏3
‏بتن انعطاف پذیر
‏بتن جدید که «‏کامپوزیت سیمانی مهندسی‏»‏، نامیده شده به دلیل عمر طولانی در دراز مدت از بتن معمولی ارزان‌تر است. ‏دانشمندان دانشگاه میشیگان گونه جدیدی از بتن مسلح با الیاف ساخته‌اند که از بتن ‏عادی 40 درصد سبک‌تر و در برابر ترک خوردن 500 بار مقاوم‌تر است. عملکرد این بتن ‏جدید از یک طرف به دلیل وجود الیاف نازکی است که 2 درصد حجم ملات بتن را تشکیل ‏می‌دهد و از طرف دیگر به این خاطر است که خود بتن از موادی ساخته شده است که برای ‏ایجاد حداکثر انعطاف‌پذیری طراحی شده‌اند.
‏به گفته دانشمندان، بتن جدید که «‏کامپوزیت سیمانی مهندسی»، نامیده شده، به دلیل عمر طولانی‌تر در دراز مدت از بتن ‏معمولی ارزان‌تر است. به گفته «ویکتور لی» استاد گروه مهندسی سازه «دانشگاه ‏میشیگان» و سرپرست تیم سازنده بتن، تکنولوژی کامپوزیت سیمانی تاکنون در پروژه‌هایی ‏در ژاپن، کره، سوئیس و ایتالیا به کار گرفته شده است. استفاده از آن در ایالات ‏متحده به نسبت کندتر بوده. این در حالی است که بتن متعارف دارای مشکلات بسیاری از ‏جمله نداشتن دوام و پایداری، شکست در اثر بارگذاری شدید و هزینه‌های تعمیر در اثر ‏شکست است. به گفته « لی »، بتن نشکن یا انعطاف‌پذیر به جز شن درشت از همان مواد ‏تشکیل‌دهنده بتن معمولی ساخته شده است. بتن نشکن کاملا شبیه بتن عادی است اما تحت ‏کرنش‌های بسیار بزرگ، بتن کامپوزیت سیمانی تغییر شکل می‌دهد، این قابلیت از آن جا ‏ناشی می‌شود که در این نوع بتن؛ شبکه الیاف داخی سیمان قابلیت لغزیدن داشته و در ‏نتیجه انعطاف‌ناپذیری بتن که باعث تردی و شکنندگی است، از میان می‌رود. امسال برای ‏اولین بار، « اداره حمل و نقل میشیگان » برای نوسازی قسمتی از عرشه پل « گرواستریت » ‏بر فراز بزرگراه «4 و I» ‏از کامپوزیت سیمانی استفاده می‌کند. دالی از جنس ‏کامپوزیست سیمانی جایگزین یک مفصل انبساطی در این قسمت از پل خواهد شد تا با متصل ‏کردن دال‌های بتنی مجاور به هم، عرشه‌ای یکنواخت از بتن به وجود آورد. استفاده از ‏مفصل انبساطی به عرشه بتنی قابلیت حرکت در اثر تغییرات می‌بخشد. اما در هنگام گیر ‏کردن مفصل‌ها، مشکلات زیادی پیش می‌آید.دانشمندان انتظار دارند استفاده از کامپوزیت ‏سیمانی باعث صرفه‌جویی در هزینه‌ها شود. اگر چه هنوز مطالعات دراز مدت زیادی برای ‏تایید عملکرد کامپوزیت سیمانی مورد نیاز است، مقایسه‌های انجام شده در « مرکز ‏سیستم‌های پایدار»، از « دانشده منابع طبیعی و محیط زیست »، به همراه گروه « لی »‏، ‏نشان می‌دهد که در یک دوره 60 ساله، استفاده در عرشه پل، کامپوزیت سیمانی نسبت به
‏4
‏بتن عادی 37 درصد ارزان‌تر است، 40 درصد انرژی کمتری مصرف می‌کند و باعث کاهش ‏انتشار دی اکسید کربن تا 39 درصد می‌شود.

 

دانلود فایل