لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن word (..doc) :
موضوع:
تعریف واقعی نور
تعریف دقیقی برای نور وجود ندارد، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی با هم ایجاد یک نظریه نامتناقض و بدون ابهام می کنند که تمام پدیدههای نوری را توجیه می کنند.
نظریه ماکسول درباره انتشار نور بحث میکند در حالیکه نظریه کوانتومی بر هم کنش نور و ماده یا جذب و نشر آن را شرح میدهد ازآمیختن این دو نظریه، نظریه جامعی که کوانتوم الکترو دینامیک نام دارد،شکل میگیرد. چون نظریههای الکترو مغناطیسی و کوانتومی علاوه بر پدیدههای مربوط به تابش بسیاری از پدیدههای دیگر را نیز تشریح می کنند منصفانه میتوان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. سرشت نور کاملاً شناخته شده است اما باز هم این پرسش هست که واقعیت نور چیست؟
گسترده طول موجی نور
نور گستره طول موجی وسیعی دارد چون با نور مرئی کار میکنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام میگیرد امّا روشهای مورد بحث میتواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود 400 نانومتر (آبی) تا 700 نانومتر (قرمز) گسترده است که در وسط آن طول موج 555 نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر میگیرد و تا فروسرخ دور گسترش مییابد. خواص نور و نحوه تولید سرعت نور در محیطهای مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است. در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. بهوسیله کاواک جسم سیاه میتوان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موجهای مختلف مشاهده شده امّا مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موج هاست. تک طول موجها آن را بهوسیله لامپهای تخلیه الکتریکی که معرف طیفهای اتمی موادی هستند که داخلشان تعبیه شده میتوان تولید کرد.
ماهیتهای متفاوت نور
ماهیت ذرهای
ایزاک نیوتن در کتاب خود در رسالهای درباره نور نوشت: پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می شوند. احتمالاً نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر میرسد در امتداد خط مستقیم منتشر می شوند که این امر را قانون مینامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است.
ماهیت موجی
همزمان با نیوتن، کریسیتان هویگنس (Christiaan Huygens)، (1695-1629) طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمههای نوری به تمام جهات پخش میشود به خاطر داشته باشید که هویگنس با به کاربردن امواج اصلی و موجکهای ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور توجیه می شوند پدیدههای تداخلیاند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایههای نازک و یا پراش نور در اطراف مانع.
ماهیت الکترومغناطیس
بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell)، ) (1879-1831) است که ما امروزه میدانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف میشود. گسترده کامل امواج الکتروو مغناطیسی شامل: موج رادیویی، تابش فروسرخ، نور مرئی از قرمز تا بنفش، تابش فرابنفش، پرتو ایکس و پرتو گاما میباشد.
ماهیت کوانتومی نور
طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول سده بیستم به وسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترو مغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترو مغناطیسی به مقدارهای گسستهای به نام "فوتون" انجام میگیرد.
نظریه مکملی
نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابراین گفته میشود که نور خاصیت دوگانهای دارد بر خی از پدیدهها مثل تداخل و پراش خاصیت موجی آن را نشان میدهد و برخی دیگر مانند پدیده فتوالکتریک، پدیده کامپتون و ... با خاصیت ذرهای نور قابل توضیح هستند.
پرتوهای دیگر:
فروسرخ: پرتو فروسرخ یا مادون قرمز تابشی است الکترومغناطیسی با طول موجی طولانیتر از نور مرئی اما کوتاهتر از تابش ریزموج. از آنجا که سرخ، رنگ نور مرئی با درازترین طول موج را تشکیل میدهد به این پرتو، فروسرخ یعنی پایین تر از سرخ میگویند.تابش فروسرخ طول موجی میان nm ۷۰۰ و nm1دارد.
گاما: با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی است، آن فاقد بار و جرم سکون است. اشعه گاما موجب برهمکنشهای کولنی نمیگردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمیدهند. معمولاً اشعه گاما تنها یک یا چند برهمکنش اتفاقی با الکترونها یا هستههای اتمهای ماده جذب کننده احساس میکند. در این برهمکنشها اشعه گاما یا بطور کامل ناپدید میگردد یا انرژی آن بطور قابل ملاحظهای تغییر مییابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش مییابد.فروپاشی گاما در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایینتر یا حالت پایه آن میرود، تشعشع الکترومغناطیسی منتشر میگردد. معادله عمومی فروپاشی گاما بصورت زیر است:
AZX
که در آنX و *X به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A) و عدد اتمی (Z) همراه نیست.
حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هستهای در نظر گرفته میشود که نیمه عمر حالت برانگیخته به اندازهای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف میگردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونهها در حالات انرژی بالاتر از حالت پایه نیز به کار میرود.
حالتهای فروپاشی گاما:
نشر اشعه گامای خالص: در این حالت فروپاشی گاما، اشعه گامای منتشر شده بهوسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از 2 کیلو الکترون ولت تا 7 میلیون الکترون ولت است، تک انرژی است. این انرژیهای گذارها بین حالت کوانتومی هسته بسیار نزدیک هستند. مقدار کمی از انرژی پسزنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و میتوان از آن صرفنظر کرد.
حالت فروپاشی بصورت تبدیل داخلی: در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون اوربیتال برانگیخته میگردد، که سپس آن الکترون از اتم دفع میشود. اشعه گاما منتشر نمیشود. بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است. الکترونهای تبدیل داخلی تک انرژی هستند. انرژی آنها معادل انرژی گذار ترازهای هستهای درگیر منهای انرژی پیوندی الکترون اتمی است.
با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در اوربیتال اتمی میشود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد.
حالت فروپاشی بصورت جفت: برای گذارهای هستهای با انرژیهای بزرگتر از 1.02 میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب میشود. در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار میرود.
انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و 1.02 میلیون الکترون ولت مورد نیاز برای تولید جفت است. پوزیترون تولید شده در این فرآیند نابود خواهد شد.
نور و امواج الکترومغناطیس
امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجاییکه مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل نارسایی مکانیک کلاسیک را دانست. لذا در این فصل دانش نور را تا پیش از ارائه شدن رابطهی مشهور پلانک بررسی میکنیم و در فصل جداگانهای خواص امواج الکترومغناطیسی بعد از مکانیک کوانتوم و نسبیت بررسی خواهد شد.
خواص نور
نخستین مسئلهای که مهم جلوه میکرد این بود که نور چیست؟ از آنجاییکه عامل دیدن بود و در تاریکی چیزی دیده نمیشد، سئوال این بود که نور چیست؟ چرا میبینیم و نور چگونه و توسط چه چیرزی تولید میشود؟ بالاخره این نظریه پیروز شد که نور توسط اجسام منیر نظیر خورشید و مشعل تولید میشود. بعد از آن مسئله انعکاس نور مورد توجه قرار گرفت و اینکه چرا برخی از اجسام بهتر از سایر اجسام نور را باز تابش می کنند؟ چرا نور از برخی اجسام عبور میکند و از برخی دیگر عبور نمیکند؟ چرا نور علاوه بر آنکه سبب دیدن است موجب گرم شدن نیز میشود؟ نور چگونه منتقل میشود؟ سرعت آن چقدر است؟ و سرانجام ماهیت نور و نحوهی انتقال آن چیست؟
نخستین آزمایش مهم نور توسط نیوتن در سال 1666 انجام شد. وی یک دسته اشعه نور خورشید را که از شکاف باریکی وارد اتاق تاریکی شده بود، بطور مایل بر وجه یک منشور شیشهای مثلث القاعدهای تابان
ید. این دسته هنگام ورود در شیشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد.
نیوتن دسته اشعه خارج شده را بر یک پرده سفید انداخت. وی مشاهده کرد که به جای تشکیل یک لکه سفید نور، دسته اشعه در نوار رنگینی که به ترتیب مرکب از رنگهای سرخ، نارنجی، زرد، سبز، آبی و بنفش است پراکنده شده است. نوار رنگینی را که از مولفههای نور تشکیل میشود، طیف مینامند.
نیوتن نظر داد که نور از ذرات بسیار ریز -دانهها- تشکیل میشود که با سرعت زیاد حرکت میکند. علاوه بر آن به نظر نیوتن نور در محیط غلیظ باسرعت بیشتری حرکت میکند. اگر نظر نیوتن در مورد سرعت نور درست میبود میبایست سرعت نور در شیشه بیشتر از هوا باشد که میدانیم درست نیست.
هویگنس در سال 1690 رسالهای در شرح نظریه موجی نور منتشر کرد. طبق اصل هویگنس حرکت نور به صورت موجی است و از چشمههای نوری به تمام جهات پخش میشود. هویگنس با به کاربردن امواج اصلی و موجکهای ثانوی قوانین بازتاب و شکست را تشریح کرد. هویگنس نظر داد که سرعت نور در محیطهای شکست دهنده کمتر از سرعت نور در هوا است که درست است.
پیروزی نظریه موجی نور
نظریه دانهای نیوتن هرچند بعضی از سئوالات را پاسخ میگفت، اما باز هم پرسشهایی وجود داشت که این نظریه نمیتوانست برای آنها جواب قانع کنندهای ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بیشتر منحرف می شوند؟ چرا دو دسته اشعهی نور میتوانند بدون آنکه بر هم اثر بگذارند، از هم بگذرند؟
اما بر اساس نظریه موجی هویگنس، دو دسته اشعهی نورانی میتوانند بدون آنکه مزاحمتی برای هم فراهم کنند از یکدیگر بگریزند. هویگنس نمیدانست که نور موج عرضی است یا موج طولی و طول موجهای نور مرئی را نیز نمیدانست. ولی چون نور در خلاء نیز منتشر میشود، وی مجبور شد محیط یا رسانه حاملی برای انتشار این امواج در نظر بگیرد. هویگنس تصور میکرد که این امواج توسط اتر منتقل می شوند. به نظر وی اتر محیط و مایع خیلی سبکی است و همه جا، حتی میان ذرات ماده نیز وجود دارد.
نظریه هویگنس نیز بطور کامل رضایت بخش نبود، زیرا نمیتوانست توضیح دهد که چرا سایهی واضح تشکیل میشود، یا چرا امواج نور نمیتوانند مانند امواج صوت از موانع بگذرند؟
نظریهی موجی و دانهای نور بیش از یکصدسال با هم مجادله کردند، اما نظریهی دانهای نیوتن بیشتر مورد قبول واقع شده بود، زیرا از یکطرف منطقیتر بهنظر میرسید و از طرف دیگر با نام نیوتن همراه بود. با وجود این هر دو نظریه فاقد شواهد پشتوانهای قوی بودند. تا آنکه بتدریج دلایلی بر موجی بودن نور ارائه گردید .
لئونارد اویلر فکر امواج دورهای را تکمیل کرد، همچنین دلیل رنگهای گوناگون را مربوط به تفاوت طول موج آنها دانست و این گام بلندی بود. در سال 1800 ویلیام هرشل آزمایش بسیار ساده اما جالبی انجام داد. وی یک دسته اشعهی نور خورشید را از منشور عبور داد و در ماورای انتهای سرخ طیف حاصل دماسنجی نصب کرد. جیوه در دماسنج بالا رفت، بدین ترتیب هرشل تابشی را کشف کرد که به تابش زیر قرمز مشهور شد.
در همین هنگام یوهان ویلهلم ریتر انتهای دیگر طیف را کشف کرد. وی دریافت که نیترات نقره که تحت تاثیر نور آبی یا بنفش به نقرهی فلزی تجزیه و رنگ آن تیره میشود، اگر در ورای طیف، در جاییکه بنفش محو میشود، نیترات نقره قرار گیرد حتی زودتر تجزیه میشود. ریتر نوری را کشف کرد که ما اکنون آن را فوق بنفش مینامیم. بدین ترتیب هرشل و ریتر از مرزهای طیف مرئی گذشتند و در قلمروهای جدید تابش پا نهادند. در این هنگام دلایل جدیدی برای موجی بودن نور توسط یانگ و فرنل ارائه گردید.
در سال 1801 توماس یانگ دست به آزمایش بسیار مهمی زد. وی یک دسته اشعهی باریک نور را از دو سوراخ نزدیک بهم گذرانید و بر پردهای که در عقب این سوراخ نصب کرده بود تابانید. احتمال میرفت که اگر نور از ذرات تشکیل شده باشند، محل تلاقی دو دسته اشعهای که از سوراخها عبور کردهاند، بر روی پرده روشنتر از جاهای دیگر باشد. اما نتیجهای که یانگ به دست آورد چیزی دیگر بود. بر روی پرده یک گروه نوارهای روشن تشکیل شده بود که هر یک به وسیلهی یک نوار تاریک از دیگری جدا میشد. این پدیده به سهولت با نظریه موجی نور توضیح داده شد.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 111 صفحه
قسمتی از متن word (..doc) :
1
فصل اول
بررسی ماهیت نور و ارتباط آن با پدیده لیزر
1-1- ماهیت نور
یونانی ها اولین کسانی هستند که کوشیدند طبیعت نور و چگونگی دیدن را توضیح دهند، بعد از آن، ظهور علوم تجربی دو نظریه مترادف را به ارمغان آورد. یکی از آنها نطریه ذرهای نیوتن بود که نور را متشکل از باریکهای از ذرات دانسته که این ذرات تابع قوانین حرکت میباشند. نظریه دیگر نظریه موجی هوک و هویگنس است که طبیعت موجی را برای نور پیشنهاد کردند. پذیرش هر نظریه مستلزم توجیه پدیدههای نور مانند انعکاس، تداخل ، شکست، پراش، فتوالکتریک، جذب و گسیل و ... میباشد و هر نظریه قادر است بعضی از پدیده های ذکر شده را توجیه کند برای مثال پدیده تداخل اولین بار توسط یانگ در سال 1801 ارائه شد که فقط با در نظر گرفتن نظریه موجی قابل توضیح است. پدیده پراش با توجه به اصل هویگنس و ایجاد موجکهای ثانوی فقط بر اساس نظریه موجی قابل توجیه است که ایشان پیشنهاد کرد که پلاریزاسیون نور فقط به دلیل عرضی بودن امواج نور اتفاق میافتد و از این رو نتیجه می شود که ارتعاشات امواج نور بر امتداد انتشار آنها عمود است برخلاف امواج صوتی که به صورت طولی بوده و امتداد ارتعاش ذرات محیط در امتداد انتشار امواج صوتی است. با پیشرفت علم و فهم بیشتر طبیعت نور، ماکسول در سال 1864 به این نتیجه رسید که نور به مانند امواج الکترومغناطیس است که دارای سرعت ، فرکانس و طول موج میباشد. امروزه برای ما کاملا ثابت شده که امواج نور از دو مولفه میدان الکتریکی و مغناطیسی عمود بر هم تشکیل شده اند و جهت انتشار امواج عمود بر امتداد ارتعاش این دو است.
در جدول 1-1 انواع امواج الکترومغناطیس و مشخصات آنها آورده شده است . گستره امواج مشخص شده در جدول شامل نواحی مختلفی است که مرز مشخصی برای آنها وجود ندارد.
2
در سال 1887 هرتز موفق به تولید امواج الکترومغناطیس نامرئی شد. امروزه ما امواج الکترومغناطیس با فرکانسهای بین را میشناسیم.
اما پدیدههای همچون فتوالکترویک، جذب و گسیل، توسط نظریه موجی نور قابل توجیه نیست.
در پدیده فتوالکتریک تابش نور برخورد کننده به سطح فلز الکترونهای آزاد میکند، رها شدن الکترون وقتی اتفاق میافتد که فرکانس پرتو تابش به حد کافی بالا باشد برای مثال در حالی که نور بسیار قوی قرمز قادر به ایجاد فوتوالکترون نیست نور آبی با شدت کم قادر به تولید فوتوالکترون است.
چرا که انرژی جنبشی کافی دارد. بر اساس نظریه ذرهای نور در سال 1905 انیشتین به سادگی پدیده فتوالکتریک را توجیه کرد. ایشان نور برخورد کننده را متشکل از بسته های کوچک انرژی یا ذراتی به نام فوتون در نظر گرفت که انرژی هر فوتون متناسب با فرکانس آن است. E=hv که h ثابت پلانک و v فرکانس میباشد فوتون برخورد کننده میتواند انرژی خود را به یک الکترون بدهد و بر نیروی فتوالکتریک نیست، نه میتواند علت عدم تولید فوتوالکترون ها را وقتی نور قرمز با شدت زیاد به کار برده میشود توضیح دهد و نه گسیل خود به خودی الکترونها وقتی که چشمه مناسب نور به کار گرفته میشود. بنابراین به نظر میرسد هر دو نظریه رقیب در مورد نور ، نه تنها مخالف هم نبوده بلکه مکمل یکدیگر میباشند و ما بایستی هر دوی آنها را بپذیریم، مادامیکه نور ، با نور برهم کنش انجام میدهد مانند پدیده تداخل نور ما نظریه موجی نور را در نظر میگیریم و وقتی که نور با ماده برهم کنش دارد مانند پدیده فوتوالکتریک ما نظریه ذرهای نور را به کار میبریم، این وضعیت به آنچه که طبیعت دو گانه تابش نامیده میشود منجر میگردد.
4
1-2 – گسیل و جذب نور
اینشتین اثر فوتوالکتریک را بر اساس کارهای قبلی پلانک توجیه نمود و نظریه کوانتومی نور برای بیان چگونگی تابش جسم سیاه را ارائه کرد. پلانک گسیل امواج الکترومغناطیس را به نوسان کننده هائی در داخل جسم سیاه نسبت داد که ایجاد میدان الکتریکی میکنند. فرض مهم این است که این نوسان کننده ها میتوانند مقادیر انرژی معینی را داشته باشند و این انرژی مضرب صحیحی از E=hv است. مطلی که پلانک معرفی نموده امروزه به نظریه کوانتومی معروف است. اهمیت نظریه کوانتومی در بحث ما این است که سیستم های اتمی دارای ترازهای انرژی مجزا یا حالت های انرژی مجزا هستند.
در سال 1823 نشان داده شد که هر عنصر اتمی یک طیف مشخصی را تولید میکند لیکن توضیح آن تا سال 1913 بوسیله بوهر میسر نشد، بوهر نظریهای ارائه داد که او را قادر ساخت طول موج طیف ساده ترین اتم ها یعنی هیدورژن را پیش بینی کند. او مدل اتمی را در فورد رابه کار برد که در آن مدل، اتم از یک هسته سنگین با بار مثبت به وسیله تعدادی بارهای منفی به نام الکترون احاطه شده تشکیل شده است و اتم های هر جسم دارای تعداد معینی الکترون میباشند، برای توضیح این که چرا الکترون ها نمیتوانند جذب بار مثبت هسته شوند او فرض کرد که الکترون ها روی مدارهائی به دور هسته مانند حرکت سیارات به دور خورشید در حرکت هستنمد. نیروهای جاذبهای که احتیاج است تا الکترون بر روی مدار معینی باقی بماند با توجه به جاذبه کولنی هسته مثبت روی الکترون منفی تامین میگردد و میتوانیم بنویسیم:
V, e,m جرم،بار و سرعت الکترون و r شعاع مدار و نفوذپذیری در خلاء است. بوهر فرض کرد تنها الکترون هیدروژن مجاز است فقط مدارهای معینی را اشغال کند. وقتی که الکترون در یکی از این مدارهای مجاز یا حالت پایه قرار دارد هیچ اثری توسط اتم ساطع نمی شود. هر یک از این مدارهای مجاز به یک تراز معین یا حالت انرژی معی مربوط می
4
شوند. برای توضیح خطوط طیفی هیدروژن ، بوهر فرض کرد که الکترون و به طبع اتم، با حرکت از یک مدار با انرژی بالاتر ( دوتر از هسته) به یک مدار با انرژی کمتر ( نزدیک تر به هسته ) انرژی از دست میدهد. این انرژی به صورت یک فوتون با انرژی hv است که
که در این رابطه به ترتیب انرژی الکترون قبل و بعد از انتقال است از آنجائی که مدارهای متعدد و مجزایی وجود دارند بنابراین انتقالات مختلفی نیز ممکن است انجام شود از این رو اتم هیدروژن فرکانس های مختلفی را می تواند گسل دارد. (شکل 1-1)
به طور کلی هر اتم تمایل دارد در حالت های انرژی پایین تر قرار گیرد. از این رو برای ایجاد طیف اتم هیدروژن لازم است الکترون ها را با تحریک کردن به ترازهای بالاتر بفرستیم. این عمل با حرارت و یا برخورد با الکترون های دیگر در لوله تخلیه الکتریکی و یا به کمک تابش با طویل موج های مناسب انجام پذیر است. هر طول موجی که توسط اتم در حالت تحریک گسیل می شود میتواند توسط آن وقتی که در ترازهای پایین انرژی قرار دارد جذب شود.
البته فوتون های برخورد کننده باید خیلی نزدیک به اختلاف انرژی بین دو تراز انرژی اتمی درگیر باشد. در این حالت جذب تشدیدی نامیده میشود. به روش مشابهی بوهر قادر بود که خطوط طیفی دیگر اتم های چند الکترونی را که طیف پیچدهتری دارند توضیح دهد. نظریه بوهر توصیف خوبی از حالت اتم بر پایه فیزیک کلاسیک و فیزیک مدرن که اساسا بر فیزیک کوانتومی استوار است، به دست می
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 20 صفحه
قسمتی از متن word (..doc) :
1
بتن عبور دهنده ی نور(لایتراکان)
«لایتراکان»، Litracon»Light Transmiting Concrete، بتن عبور دهنده نور، امروزه به عنوان یک متریال ساختمانی جدید با قابلیت استفاده بالا مطرح است. این متریال ترکیبی از فیبر های نوری و ذرات بتن است و می تواند به عنوان بلوک ها و یا پانل های پیش ساخته ساختمانی مورد استفاده قرار گیرد. فیبر ها بخاطر اندازه کوچکشان با بتن مخلوط شده و ترکیبی از یک متریال دانه بندی شده را تشکیل می دهند. به این ترتیب نتیجه کار صرفا ترکیب دو متریال شیشه و بتن نیست، بلکه یک متریال جدید سوم که از لحاظ ساختار درونی و همچنین سطوح بیرونی کامل همگن است، به دست می آید.
فیبر های شیشه باعث نفوذ نور به داخل بلوک ها می شوند. جالب تریت حالت این پدیده نمایش سایه ها در وجه مقابل ضلع نور خورده است. همچنین رنگ نوری که از پشت این بتن دیده می شود ثابت است به عنوان مثال اگر نور سبز به پشت بلوک بتابد در جلوی آن سایه ها سبز دیده می شوند. هزاران فیبر شیشه ای نوری به صورت موازی کنار هم بین دو وجه اصلی بلوک بتنی قرار می گیرند. نسبت فیبر ها بسیار کم و حدود 4 درصد کل میزان بلوک ها است. علاوه بر این فیبر ها بخاطر اندازه کوچکشان با بتن مخلوط شده و تبدیل به یک جزء ساختاری می شوند بنابر این سطح بیرونی بتن همگن و یکنواخت باقی می ماند. در تئوری، ساختار یک دیوار ساخته شده با بتن عبور دهنده نور، می تواند تا چند متر ضخامت داشته باشد زیرا فیبر ها تا 20متر بدون از دست دادن نور عمل می کنند و در دیواری با این ضخامت باز هم عبور نور وجود دارد.
2
ساختار های باربر هم می توانند از این بلوکها ساخته شوند. زیرا فیبر های شیشه ای هیچ تاثیر منفی روی مقاومت بتن ندارند. بلوکها می توانند در اندازه ها ی متنوع و با عایق حرارتی خاص نصب شده روی آنها تولید شوند.
این متریال در سال 2001 توسط یک معمار مجار به نام «آرون لاسونسزی» اختراع شد و به ثبت رسید. این معمار زمانیکه در سن 27 سالگی در کالج سلطنتی هنر های زیبای استکهلم مشغول به تحصیل بود این ایده را بیان کرد و در سال 2004 شرکت خود را با نام لایتراکان تاسیس کرد و با توجه به نیاز و تمایل جامعه امروز به استفاده از مصالح جدید ساختمانی، از سال 2006 با شرکت های بزرگ صنعتی به توافق رسیده و تولید انبوه آن به زودی آغاز خواهد شد...
3
بتن انعطاف پذیر
بتن جدید که «کامپوزیت سیمانی مهندسی»، نامیده شده به دلیل عمر طولانی در دراز مدت از بتن معمولی ارزانتر است. دانشمندان دانشگاه میشیگان گونه جدیدی از بتن مسلح با الیاف ساختهاند که از بتن عادی 40 درصد سبکتر و در برابر ترک خوردن 500 بار مقاومتر است. عملکرد این بتن جدید از یک طرف به دلیل وجود الیاف نازکی است که 2 درصد حجم ملات بتن را تشکیل میدهد و از طرف دیگر به این خاطر است که خود بتن از موادی ساخته شده است که برای ایجاد حداکثر انعطافپذیری طراحی شدهاند.
به گفته دانشمندان، بتن جدید که «کامپوزیت سیمانی مهندسی»، نامیده شده، به دلیل عمر طولانیتر در دراز مدت از بتن معمولی ارزانتر است. به گفته «ویکتور لی» استاد گروه مهندسی سازه «دانشگاه میشیگان» و سرپرست تیم سازنده بتن، تکنولوژی کامپوزیت سیمانی تاکنون در پروژههایی در ژاپن، کره، سوئیس و ایتالیا به کار گرفته شده است. استفاده از آن در ایالات متحده به نسبت کندتر بوده. این در حالی است که بتن متعارف دارای مشکلات بسیاری از جمله نداشتن دوام و پایداری، شکست در اثر بارگذاری شدید و هزینههای تعمیر در اثر شکست است. به گفته « لی »، بتن نشکن یا انعطافپذیر به جز شن درشت از همان مواد تشکیلدهنده بتن معمولی ساخته شده است. بتن نشکن کاملا شبیه بتن عادی است اما تحت کرنشهای بسیار بزرگ، بتن کامپوزیت سیمانی تغییر شکل میدهد، این قابلیت از آن جا ناشی میشود که در این نوع بتن؛ شبکه الیاف داخی سیمان قابلیت لغزیدن داشته و در نتیجه انعطافناپذیری بتن که باعث تردی و شکنندگی است، از میان میرود. امسال برای اولین بار، « اداره حمل و نقل میشیگان » برای نوسازی قسمتی از عرشه پل « گرواستریت » بر فراز بزرگراه «4 و I» از کامپوزیت سیمانی استفاده میکند. دالی از جنس کامپوزیست سیمانی جایگزین یک مفصل انبساطی در این قسمت از پل خواهد شد تا با متصل کردن دالهای بتنی مجاور به هم، عرشهای یکنواخت از بتن به وجود آورد. استفاده از مفصل انبساطی به عرشه بتنی قابلیت حرکت در اثر تغییرات میبخشد. اما در هنگام گیر کردن مفصلها، مشکلات زیادی پیش میآید.دانشمندان انتظار دارند استفاده از کامپوزیت سیمانی باعث صرفهجویی در هزینهها شود. اگر چه هنوز مطالعات دراز مدت زیادی برای تایید عملکرد کامپوزیت سیمانی مورد نیاز است، مقایسههای انجام شده در « مرکز سیستمهای پایدار»، از « دانشده منابع طبیعی و محیط زیست »، به همراه گروه « لی »، نشان میدهد که در یک دوره 60 ساله، استفاده در عرشه پل، کامپوزیت سیمانی نسبت به
4
بتن عادی 37 درصد ارزانتر است، 40 درصد انرژی کمتری مصرف میکند و باعث کاهش انتشار دی اکسید کربن تا 39 درصد میشود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 24 صفحه
قسمتی از متن word (..doc) :
1
همدوسی نور:
همدوسی کافی نور برای اثرات تداخل ضروری است اما هرهمدوسی ناچیزی می تواند باعث ایجاد اثرات شبکه توری شود .برای مثال برهم کنش خیلی کوتاه طول ها به کاربرده می شود یا زمان های مشاهده خیلی کوتاه به کاربرده می شوند .این زمان مشاهده می تواند خیلی کوتاهتر از مدت بالس لیزر باشد برای مثال اگر ماده زمان های واپاشی خیلی کوتاهی داشته باشد شرایط وامکان تداخل باید به دقت بررسی شود.
اشعه نور همدوس می تواند با آزمایشات معمولی وقرار دادی تداخل تعریف شود درعملکردهای فتونیک کمپلکس که باعث همدوسی شبکه توری می شود.
همدوسی طولی:
همدوسی محدود زمانی می تواند به وسیله همدوسی خطی وهمدوسی زمانی باریکه نور تعریف شود وبه وسیله مشاهده مدوله عمق دریک آزمایش تداخل اندازه گیری شود شبیه یک تابع تاخیزی نور بین اشعه ها .
یک مقدمه برای این هدف درشکل 28-2 نشان داده شده .
اشعه تابیده شکافته می شود به دوقسمت مساوی به وسیله اشعه BS شکافنده که می تواند یک آینه 50% باشد .
2
اشعه ها تنها در آیندهای M2 , M1 بازتاب می شوند ودوباره درBS ترکیب می شوند. به وسیله حرکت دادن آینه M1 درامتداد X ازتداخل سنج مایکسول اشع های نور می تواند به ترتیب پشت سر هم تاخیر داشته باشند .
نتایج شدت مدوله شده شبیه سرعت فریز V (X) باشدت IMIN ,IMAT برطبق قطر باریکه اندازه گیری می شود مثلاً بایک دوربین CCD شبیه یک تابع تاخیری X :
سرعت فریز V(X) =
همدوسی طولی LC با تاخیر برای سرعت فریز که با ضریب کاهش یافته تعریف می شود . که بدون تاخیر بعضی اوقات یا به جای استفاده می شود .
همدوسی طولی LC => V( LC ) = V( X=0)
درهر حالتی همدوسی طولی با طول موج نور همدوس اندازه گیری می شود توجه کنید که طول موج نور تعدادی نوسان ایجاد می کند کخ همزمان هستند .